TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

262,144-WORD BY 16-BIT FULL CMOS STATIC RAM

DESCRIPTION

The TC55NEM216ASGV is a 4,194,304-bit static random access memory (SRAM) organized as 262,144 words by 16 bits. Fabricated using Toshiba's CMOS Silicon gate process technology, this device operates from a single 2.7 to 5.5 V power supply. Advanced circuit technology provides both high speed and low power at an operating current of $3 \mathrm{~mA} / \mathrm{MHz}$ (typ) and a minimum cycle time of 55 ns . It is automatically placed in low-power mode at $1.8 \mu \mathrm{~A}$ standby current (typ) when chip enable ($\overline{\mathrm{CE}}$) is asserted high or chip select (CS) is asserted low. There are three control inputs. $\overline{\mathrm{CE}}$ is used to select the device and for data retention control, and output enable ($\overline{\mathrm{OE}}$) provides fast memory access. Data byte control pin ($\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$) provides lower and upper byte access. This device is well suited to various microprocessor system applications where high speed, low power and battery backup are required. And, with a guaranteed operating extreme temperature range of -40° to $85^{\circ} \mathrm{C}$, the TC55NEM216ASGV can be used in environments exhibiting extreme temperature conditions. The TC55NEM216ASGV is available in a plastic 44-pin thin-small-outline package (TSOP).

FEATURES

- Low-power dissipation

Operating: $15 \mathrm{~mW} / \mathrm{MHz}$ (typical)

- Single power supply voltage of 2.7 to 5.5 V
- Power down features using $\overline{\mathrm{CE}}$
- Data retention supply voltage of 2.0 to 5.5 V
- Direct TTL compatibility for all inputs and outputs
- Wide operating temperature range of -40° to $85^{\circ} \mathrm{C}$
- Standby Current (maximum): $20 \mu \mathrm{~A}$
- Access Times (maximum):

	$5 \mathrm{~V} \pm 10 \%$		$2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}$	
	55	70	55	70
Access Time	55 ns	70 ns	85 ns	100 ns
$\overline{\mathrm{CE}}$ Access Time	55 ns	70 ns	85 ns	100 ns
$\overline{\mathrm{OE}}$ Access Time	30 ns	35 ns	60 ns	70 ns

- Package:

TSOP II44-P-400-0.80
(Weight:0.47 g typ)

- Lead-Free

PIN ASSIGNMENT (TOP VIEW)

44 PIN TSOP

A4 $\quad 10$	44 A5
A3 2	43 A6
A2 C^{2}	42 A7
A1 44	
A0 55	40 UB
$\overline{\text { CE }} 6$	39 P LB
I/O1 7	38 I/O16
I/O2 8	37 l I/O15
1/O3 59	36 P I/O14
1/O4 -10	$351 / 013$
Vdd 611	34 GND
GND 12	33 V Vd
I/O5 13	$32 \mathrm{l} /$ O12
1/06-14	31 I/O11
1/07 15	30 I/O10
I/O8 16	29] I/O9
R/W 17	$28 . \mathrm{CS}$
A15 -18	27 - A8
A14 19	26 A9
A13 20	25 A10
A12 21	24 A11
A16 22	23] A17

PIN NAMES

A0~A17	Address Inputs
$\overline{\mathrm{CE}}$	Chip Enable
CS	Chip Select
R / W	Read/Write Control
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$	Data Byte Control
$\mathrm{I} / \mathrm{O} 1 \sim \mathrm{I} / \mathrm{O} 16$	Data Inputs/Outputs
V DD	Power
GND	Ground
NC	No Connection

BLOCK DIAGRAM

OPERATING MODE

MODE	$\overline{C E}$	CS	$\overline{\mathrm{OE}}$	R/W	$\overline{\text { LB }}$	$\overline{\text { UB }}$	I/O1~1/08	I/O9~I/O16	POWER
Read	L	H	L	H	L	L	Output	Output	IDDO
	L	H	L	H	H	L	High-Z	Output	IDDO
	L	H	L	H	L	H	Output	High-Z	IDDO
Write	L	H	*	L	L	L	Input	Input	IDDO
	L	H	*	L	H	L	High-Z	Input	IDDO
	L	H	*	L	L	H	Input	High-Z	IDDO
Output Deselect	L	H	H	H	L	L	High-Z	High-Z	IDDO
	L	H	H	H	H	L	High-Z	High-Z	IDDO
	L	H	H	H	L	H	High-Z	High-Z	IDDO
CS Standby	*	L	*	*	*	*	High-Z	High-Z	IDDS
Standby	H	*	*	*	*	*	High-Z	High-Z	IDDS
	*	*	*	*	H	H	High-Z	High-Z	IDDS

* = don't care
$\mathrm{H}=$ logic high
L = logic low

MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
$V_{\text {DD }}$	Power Supply Voltage	$-0.3 \sim 7.0$	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	$-0.3^{*} \sim 7.0$	V
$\mathrm{~V}_{\text {I/O }}$	Input/Output Voltage	$-0.5 \sim V_{\text {DD }}+0.5$	V
P_{D}	Power Dissipation	0.6	W
$\mathrm{~T}_{\text {solder }}$	Soldering Temperature (10s)	260	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Opr }}$	Operating Temperature	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$

*: -2.0 V when measured at a pulse width of 20 ns

DC RECOMMENDED OPERATING CONDITIONS ($\mathbf{T a}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	$5 \mathrm{~V} \pm 10 \%$			$2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}$			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
VDD	Power Supply Voltage	4.5	5.0	5.5	2.7	5.0	5.5	V
V_{IH}	Input High Voltage	$2.4 *$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	$V_{D D}-0.2$	-	$V_{D D}+0.3$	V
VIL	Input Low Voltage	$-0.3{ }^{* 2}$	-	0.6	$-0.3{ }^{* 2}$	-	0.2	V
$V_{\text {DH }}$	Data Retention Supply Voltage	2.0	-	5.5	2.0	-	5.5	V

[^0]DC CHARACTERISTICS ($\mathrm{Ta}=-40^{\circ}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$)

SYMBOL	PARAMETER	TEST CONDITION			MIN	TYP	MAX	UNIT
IIL	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \sim \mathrm{~V}_{\text {DD }}$			-	-	± 1.0	$\mu \mathrm{A}$
${ }^{\mathrm{IOH}}$	Output High Current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			-1.0	-	-	mA
$\mathrm{IOL}^{\text {l }}$	Output Low Current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$			2.1	-	-	mA
ILO	Output Leakage Current	$\begin{array}{\|l} \hline \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{CS}=\mathrm{V}_{\mathrm{IL}} \text { or } \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IL}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{array}$			-	-	± 1.0	$\mu \mathrm{A}$
IDDO1	Operating Current	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \text { and } \mathrm{CS}=\mathrm{V}_{\mathrm{IH}} \text { and } \\ & \mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{lOUT}=0 \mathrm{~mA}, \\ & \text { Other Input }=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$t_{\text {cycle }}$	MIN	-	-	35	mA
				$1 \mu \mathrm{~s}$	-	8	-	
IDDO2		$\begin{aligned} & \hline \overline{\mathrm{CE}}=0.2 \mathrm{~V} \text { and } \mathrm{CS}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \text { and } \\ & \mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=0.2 \mathrm{~V}, \\ & \text { louT }=0 \mathrm{~mA}, \\ & \text { Other Input }=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} / 0.2 \mathrm{~V} \end{aligned}$	$t_{\text {cycle }}$	MIN	-	-	30	mA
				$1 \mu \mathrm{~s}$	-	3	-	
IDDS1	Standby Current	1) $\overline{\mathrm{CE}}=V_{I H}$ 2) $C S=V_{I L}$ 3) $\overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{IH}}$			-	-	3	mA
IDDS2		1) $\overline{C E}=V_{D D}-0.2 \mathrm{~V}$ 2) $\mathrm{CS}=0.2 \mathrm{~V}$ 3) $\overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, $C S=V_{D D}-0.2 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		-	1.8	-	$\mu \mathrm{A}$
			$\mathrm{Ta}=-40 \sim 40^{\circ} \mathrm{C}$		-	-	3	
			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		-	-	20	

DC CHARACTERISTICS ($\mathrm{Ta}=-40^{\circ}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$)

SYMBOL	PARAMETER	TEST CONDITION			MIN	TYP	MAX	UNIT
IIL	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}}$			-	-	± 1.0	$\mu \mathrm{A}$
IOH	Output High Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$			-0.1	-	-	mA
lol	Output Low Current	$\mathrm{V}_{\mathrm{OL}}=0.2 \mathrm{~V}$			0.1	-	-	mA
ILO	Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{CS}=\mathrm{V}_{\mathrm{IL}} \text { or } \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IL}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}} \end{aligned}$			-	-	± 1.0	$\mu \mathrm{A}$
IDDO2	Operating Current	$\begin{aligned} & \overline{\mathrm{CE}}=0.2 \mathrm{~V} \text { and } \mathrm{CS}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \text { and } \\ & \mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=0.2 \mathrm{~V}, \\ & \mathrm{l} \mathrm{OUT}=0 \mathrm{~mA}, \\ & \text { Other Input }=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} / 0.2 \mathrm{~V} \end{aligned}$	$\mathrm{t}_{\text {cycle }}$	MIN $1 \mu \mathrm{~s}$	-	-	30 -	mA
IDDS2	Standby Current	1) $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$ 2) $\mathrm{CS}=0.2 \mathrm{~V}$ 3) $\begin{aligned} & \overline{\mathrm{LB}}=\overline{\mathrm{UB}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}, \\ & \mathrm{CS}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \end{aligned}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		-	1.6	-	$\mu \mathrm{A}$
			$\mathrm{Ta}=-40 \sim 40^{\circ} \mathrm{C}$		-	-	3	
			$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$		-	-	20	

CAPACITANCE $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	TEST CONDITION	MAX	UNIT
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	10	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=$ GND	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

AC CHARACTERISTICS AND OPERATING CONDITIONS
($\mathrm{Ta}=-40^{\circ}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$)
READ CYCLE

SYMBOL	PARAMETER	TC55NEM216ASGV				UNIT
		55		70		
		MIN	MAX	MIN	MAX	
trc	Read Cycle Time	55	-	70	-	ns
$\mathrm{t}_{\mathrm{ACC}}$	Address Access Time	-	55	-	70	
tco	Chip Enable Access Time	-	55	-	70	
toe	Output Enable Access Time	-	30	-	35	
tBA	Data Byte Control Access Time	-	55	-	70	
tcoe	Chip Enable Low to Output Active	5	-	5	-	
toee	Output Enable Low to Output Active	0	-	0	-	
$t_{B E}$	Data Byte Control Low to Output Active	5	-	5	-	
tod	Chip Enable High to Output High-Z	-	25	-	30	
todo	Output Enable High to Output High-Z	-	25	-	30	
$t_{B D}$	Data Byte Control High to Output High-Z	-	25	-	30	
toh	Output Data Hold Time	10	-	10	-	

WRITE CYCLE

SYMBOL	PARAMETER	TC55NEM216ASGV				UNIT
		55		70		
		MIN	MAX	MIN	MAX	
twc	Write Cycle Time	55	-	70	-	ns
twp	Write Pulse Width	40	-	50	-	
tcw	Chip Enable to End of Write	45	-	55	-	
$t_{B W}$	Data Byte Control to End of Write	45	-	55	-	
$t_{\text {AS }}$	Address Setup Time	0	-	0	-	
twR	Write Recovery Time	0	-	0	-	
todw	R/W Low to Output High-Z	-	25	-	30	
toew	R/W High to Output Active	0	-	0	-	
$t_{\text {DS }}$	Data Setup Time	25	-	30	-	
$t_{\text {DH }}$	Data Hold Time	0	-	0	-	

Note: $t_{O D}, t_{O D O}, t_{B D}$ and t an output voltage level.

AC TEST CONDITIONS

PARAMETER	TEST CONDITION
Input pulse level	$0.4 \mathrm{~V}, 2.6 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	5 ns
Timing measurements	1.5 V
Reference level	1.5 V
Output load	$30 \mathrm{pF}+1$ TTL Gate (55)

AC CHARACTERISTICS AND OPERATING CONDITIONS
(Ta $=-40^{\circ}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)
READ CYCLE

SYMBOL	PARAMETER	TC55NEM216ASGV				UNIT
		55		70		
		MIN	MAX	MIN	MAX	
t_{RC}	Read Cycle Time	85	-	100	-	ns
$\mathrm{t}_{\mathrm{ACC}}$	Address Access Time	-	85	-	100	
tco	Chip Enable Access Time	-	85	-	100	
toe	Output Enable Access Time	-	60	-	70	
$t_{B A}$	Data Byte Control Access Time	-	85	-	100	
tcoe	Chip Enable Low to Output Active	5	-	5	-	
toee	Output Enable Low to Output Active	0	-	0	-	
$t_{B E}$	Data Byte Control Low to Output Active	5	-	5	-	
tod	Chip Enable High to Output High-Z	-	35	-	40	
todo	Output Enable High to Output High-Z	-	35	-	40	
$t_{B D}$	Data Byte Control High to Output High-Z	-	35	-	40	
tor	Output Data Hold Time	10	-	10	-	

WRITE CYCLE

SYMBOL	PARAMETER	TC55NEM216ASGV				UNIT
		55		70		
		MIN	MAX	MIN	MAX	
twc	Write Cycle Time	85	-	100	-	ns
twp	Write Pulse Width	55	-	60	-	
tcw	Chip Enable to End of Write	60	-	70	-	
$t_{B W}$	Data Byte Control to End of Write	60	-	70	-	
$t_{\text {AS }}$	Address Setup Time	0	-	0	-	
twR	Write Recovery Time	0	-	0	-	
todw	R/W Low to Output High-Z	-	35	-	40	
toew	R/W High to Output Active	0	-	0	-	
$t_{\text {DS }}$	Data Setup Time	35	-	40	-	
$t_{\text {DH }}$	Data Hold Time	0	-	0	-	

Note: $t_{O D}, t_{O D O}, t_{B D}$ and $t_{O D W}$ are specified in time when an output becomes high impedance, and are not judged depending on an output voltage level.

AC TEST CONDITIONS

PARAMETER	TEST CONDITION
Input pulse level	$0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}-0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	5 ns
Timing measurements	1.5 V
Reference level	1.5 V
Output load	30 pF (Include Jig) (55)

TIMING DIAGRAMS

READ CYCLE ${ }^{\text {(See Note 1) }}$

WRITE CYCLE 1 (R/W CONTROLLED) ${ }^{\text {(See Note 4) }}$

WRITE CYCLE 2 ($\overline{\text { CE CONTROLLED) }}$ (See Note 4)

WRITE CYCLE 3 ($\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ CONTROLLED) ${ }^{\text {(See Note 4) }}$

Note:
(1) R / W remains HIGH for the read cycle.
(2) If $\overline{\mathrm{CE}}$ (or $\overline{\mathrm{UB}}$ or $\overline{\mathrm{LB}}$) goes LOW (or CS goes HIGH) coincident with or after R/W goes LOW, the outputs will remain at high impedance.
(3) If $\overline{\mathrm{CE}}$ (or $\overline{\mathrm{UB}}$ or $\overline{\mathrm{LB}}$) goes HIGH(or CS goes LOW) coincident with or before R/W goes HIGH, the outputs will remain at high impedance.
(4) If $\overline{\mathrm{OE}}$ is HIGH during the write cycle, the outputs will remain at high impedance.
(5) Because I/O signals may be in the output state at this time, input signals of reverse polarity must not be applied.

DATA RETENTION CHARACTERISTICS ($\mathbf{~} \mathbf{~}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT
V ${ }_{\text {DH }}$	Data Retention Supply Voltage		2.0	-	5.5	V
IDDS2	Standby Current	$\mathrm{Ta}=-40 \sim 40^{\circ} \mathrm{C}$	-	-	3	$\mu \mathrm{A}$
		$\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}$	-	-	20	
tcDR	Chip Deselect to Data Retention Mode Time		0	-	-	ns
t_{R}	Recovery Time		5	-	-	ms

$\overline{\overline{C E}}$ CONTROLLED DATA RETENTION MODE

CS CONTROLLED DATA RETENTION MODE (See Note 2)

Note:

(1) In $\overline{\mathrm{CE}}$ controlled data retention mode, minimum standby current mode is entered when $\mathrm{CS} \leq 0.2 \mathrm{~V}$ or $\mathrm{CS} \geq \mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}$.
(2) When $\overline{\mathrm{CE}}$ is operating at the $\mathrm{V}_{\mathrm{IH}}(\min$.$) level (2.4 \mathrm{~V})$, the operating current is given by IDDS 1 during the transition of V_{DD} from 4.5 to 2.6 V .
(3) In CS controlled data retention mode, minimum standby current mode is entered when $\mathrm{CS} \leq 0.2 \mathrm{~V}$.
(4) In $\overline{\mathrm{UB}}$ (or $\overline{\mathrm{LB}}$) controlled data retention mode, minimum standby current mode is entered when $\overline{\mathrm{CE}}, \mathrm{CS} \leq 0.2 \mathrm{~V}$ or $\overline{\mathrm{CE}}, \mathrm{CS} \geq \mathrm{VDD}-0.2 \mathrm{~V}$.
(5) When $\overline{\mathrm{UB}}$ (or $\overline{\mathrm{LB}}$) is operating at the $\mathrm{V}_{\mathrm{IH}}(\min$.$) level (2.4 \mathrm{~V})$, the operating current is given by IDDS1 during the transition of VDD from 4.5 to 2.6 V .

PACKAGE DIMENSIONS

TSOP II 44-P-400-0.80

Weight:0.47 g (typ)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

[^0]: *1: CS pin $=\mathrm{V}_{\mathrm{DD}} \times 0.7$
 *2: -2.0 V when measured at a pulse width of 20 ns

